GLM-5 is a next-generation open-source foundation model from Z.ai designed to push the boundaries of agentic engineering and complex task execution. Compared to earlier versions, it significantly expands parameter count and training data, while introducing DeepSeek Sparse Attention to optimize inference efficiency. The model leverages a novel asynchronous reinforcement learning framework called slime, which enhances training throughput and enables more effective post-training alignment. GLM-5 delivers leading performance among open-source models in reasoning, coding, and general agent benchmarks, with strong results on SWE-bench, BrowseComp, and Vending Bench 2. Its ability to manage long-horizon simulations highlights advanced planning, resource allocation, and operational decision-making skills. Beyond benchmark performance, GLM-5 supports real-world productivity by generating fully formatted documents such as .docx, .pdf, and .xlsx files. It integrates with coding agents like Claude Code and OpenClaw, enabling cross-application automation and collaborative agent workflows. Developers can access GLM-5 via Z.ai’s API, deploy it locally with frameworks like vLLM or SGLang, or use it through an interactive GUI environment. The model is released under the MIT License, encouraging broad experimentation and adoption. Overall, GLM-5 represents a major step toward practical, work-oriented AI systems that move beyond chat into full task execution.